老虎机技巧-MG老虎机移动平台

學術預告 首頁  >  學術科研  >  學術預告  >  正文

“慶祝建校四十年”系列學術活動之三元名家論壇:Safe Adaptive Control of Hyperbolic PDE-ODE Cascades
作者:     供圖:     供圖:     日期:2024-11-11     來源:    

講座主題:Safe Adaptive Control of Hyperbolic PDE-ODE Cascades

專家姓名:王驥

工作單位:廈門大學

講座時間:2024年11月12日10:00-10:40

講座地點:數學院大會議室341

主辦單位:煙臺大學數學與信息科學學院

內容摘要:

Adaptive safe control employing conventional continuous infinite-time adaptation requires that the initial conditions be restricted to a subset of the safe set due to parametric uncertainty, where the safe set is shrunk in inverse proportion to the adaptation gain. The recent regulation-triggered adaptive control approach with batch least-squares identification (BaLSI, pronounced ``ballsy'') completes perfect parameter identification in finite time and offers a previously unforeseen advantage in adaptive safe control. Since the true challenge of safe control is exhibited for CBF of a high relative degree, we undertake a safe BaLSI design for a class of systems that possess a particularly extreme relative degree: ODE-PDE-ODE sandwich systems. Such sandwich systems arise in various applications, including delivery UAVs (Unmanned Aerial Vehicles) with a cable-suspended load. Collision avoidance of the payload with the surrounding environment is required. The considered class of plants is coupled hyperbolic PDEs sandwiched by a strict-feedback nonlinear ODE and a linear ODE, where the unknown coefficients, whose bounds are known and arbitrary, are associated with the PDE in-domain coupling terms that can cause instability and with the input signal of the distal ODE. We introduce the concept of PDE CBF whose non-negativity as well as the ODE CBF's non-negativity are ensured with a backstepping-based safety filter. Our safe adaptive controller is explicit and operates in the entire original safe set. The designed controller guarantees: 1) the finite-time exact parameter identification of the unknown parameters; 2) the safety of the state furthermost from the control input; 3) the exponential regulation of the overall plant state to zero.

主講人介紹:

王驥,2018獲重慶大學機械工程博士學位,2019-2021加州大學圣地亞哥分校機械與航空工程系博士后。目前是廈門大學航空航天學院副教授,入選廈門大學“南強青年拔尖人才支持計劃”。主要從事分布參數系統邊界控制理論及其在柔性機械結構中的應用研究。以第一作者在控制領域頂刊IEEE TAC和 Automatica發表論文13篇(長文12篇),出版學術專著一部(Princeton University Press)。目前擔任Systems & Control Letters編委。

虚拟百家乐游戏下载| 葡京百家乐官网技巧| 做生意什么花招财| 大发888主页优惠| 现金百家乐游戏| 真人百家乐宣传| 胶州市| 做生意门面对着什么方向好| 丹东亿酷棋牌世界官方下载| 太阳百家乐官网网址| 蕉岭县| 仕達屋百家乐官网的玩法技巧和规则| 大发888博彩官方下载| 网上百家乐官网赌博出| 棋牌娱乐平台| 百家乐赌球| 百家乐牌路图表下| 百家乐官网娱乐城玩法| 大发888娱乐城哪个好| 百家乐官网棋牌游戏源码| 百家乐大眼仔小路| 武邑县| 网上百家乐官网有假的吗| bet365苹果| 真人版百家乐试玩| 利高百家乐现金网| 皇冠足球| 大发888大法8668| 百家乐官网百姓话题| 墨竹工卡县| 悠游棋牌游戏| 威尼斯人娱乐城 线路畅通中心| 做生意门朝山| 大丰收百家乐官网的玩法技巧和规则 | 至尊百家乐官网20111110| 瑞丰国际开户| 威尼斯人娱乐场首页| 24山安葬吉凶择日| 游戏百家乐官网的玩法技巧和规则 | 大家旺百家乐官网的玩法技巧和规则 | 百家乐平点|