老虎机技巧-MG老虎机移动平台

學術預告 首頁  >  學術科研  >  學術預告  >  正文

三元名家論壇:Stability and error estimation based on a difference-spectral approximation for Cahn-Hilliard equation in complex domains
作者:     供圖:     供圖:     日期:2025-05-06     來源:    

講座主題:Stability and error estimation based on a difference-spectral approximation for Cahn-Hilliard equation in complex domains

專家姓名:安靜

工作單位:貴州師范大學

講座時間:2025年05月07日14:00-15:00

講座地點:數學院大會議室341

主辦單位:煙臺大學數學與信息科學學院

內容摘要:

In this paper, we introduce and investigate a novel numerical method for solving the Cahn-Hilliard equation in two-dimensional complex domains by employing region transformation. Initially, we convert the fourth-order equation into a second-order coupled system and formulate its first- and second-order semi-implicit schemes. Afterwards, we transform them into the polar coordinates equivalents. By introducing a category of weighted Sobolev spaces, we elaborate on fully discrete schemes and offer a theoretical validation of their stability. In particular, the introduction of pole singularities and the nonlinearity of the coupling problem pose significant challenges to theoretical analysis. To address these challenges, we introduce a novel class of projection operators and establish their approximation properties. Leveraging these properties, we provide error estimates for the approximate solutions. To validate our theoretical insights and algorithm's efficacy, we conclude with a series of numerical examples.

主講人介紹:

安靜,貴州師范大學教授,博士生導師,主持完成國家自然科學基金項目3項,在研國家自然科學基金項目1項,在SIAM J NUMER ANAL、J SCI COMPUT、APPL NUMER MATH等期刊發表SCI學術論文30余篇。

澳门百家乐经历| 华泰百家乐官网的玩法技巧和规则| 肯博| 百家乐转盘技巧| 开心8百家乐官网娱乐城| 百家乐娱乐软件| 百家乐官网游戏下裁| 大发888m磨卡游戏| 乐宝百家乐娱乐城| 百家乐官网玩法与规则| 大发888客户端de 软件| 百家乐网络游戏平台| 百家乐官网最常见的路子| 大发888娱乐成| 百家乐赌博大全| 新彩百家乐官网的玩法技巧和规则| 平原县| 晓游棋牌官网| 百家乐全讯网娱乐城| 免费玩百家乐官网的玩法技巧和规则 | 百家乐官网美女真人| 真人百家乐蓝盾赌场娱乐网规则| 百家乐官网有诈吗| 百家乐官网园36bol在线| 百家乐官网的庄闲概率| 大发888在线娱乐百家乐| 百家乐网上真钱娱乐| 澳门百家乐官网www.bjbj100.com| 百家乐官网大钱赢小钱| 巍山| 现金娱乐城| TT娱乐城开户,| 大发888娱乐场下载ypu rd| 大发888赌场| 威尼斯人娱乐网网上百家乐的玩法技巧和规则 | 爱赢百家乐现金网| 百家乐官网赚水方法| 百家乐官网投注限额| 易发百家乐| 大发888黄金版娱乐场| 大发888hanpa|